

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 2063-2066

Tetrahedron Letters

Regioselective synthesis of 5-alkylidene and 5-(iodoalkylidene)pyrrol-2(5*H*)-ones by halolactamisation of (2*Z*,4*E*)-dienamides and (*Z*)-alk-2-en-4-ynamides

Khalil Cherry,^a Jérôme Thibonnet,^{a,b} Alain Duchêne,^a Jean-Luc Parrain^b and Mohamed Abarbri^{a,*}

^aLaboratoire de Physicochimie des Interfaces et des Milieux Réactionnels, Faculté des Sciences de Tours, Parc de Grandmont, 37200 Tours, France

^bLaboratoire de Synthèse Organique, UMR 6009, Faculté des Sciences de Saint Jérôme, 13397 Marseille Cedex 20, France

Received 18 December 2003; revised 14 January 2004; accepted 16 January 2004

Abstract—Stereo- and regioselective synthesis of 5-alkylidene (arylidene) and 5-(iodoalkylidene)-pyrrol-2(5*H*)-ones was achieved from (2Z, 4E)-dienamides and (Z)-alk-2-en-4-ynamides by halocyclisation reaction. Selectivity was found to be highly dependent on the nature of the substituents and on the temperature.

© 2004 Elsevier Ltd. All rights reserved.

5-Ylidene pyrrol-2(5H)-one structural unit **2** is found in a range of biologically important natural products including holomycin,1 pukeleimide,2 isoampullicin3 and the bile pigment bilirubin.⁴ Although extensive methodology has been developed for the construction of 5ylidene furan-2(5H)-ones and 4-ylidene tetronic acids,⁵ only a few examples are reported for the preparation of 5-ylidene pyrrol-2(5H)-ones 2.⁶ Nevertheless, although Z-selectivity of the exocyclic double bond is relatively easy to control, clean access to the (E)-stereoisomer still remains a challenge for organic chemists. We recently reported the regioselective synthesis of α -pyrones and α pyridones under palladium complex catalysis by coupling tributylstannylallenes with (Z)-iodovinylic acids or (Z)-iodovinylic amides.^{7,8} We have also previously described the synthesis of dienoic acids and envnoic

Keywords: Pyrrolones; Halolactamisation.

* Corresponding author. Tel.: +33-2-47-36-73-59; fax: +33-2-47-36-69-60; e-mail: abarbri@univ-tours.fr

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.01.063

acids from β -iodovinylic acids and vinyltins and alkynylzinc reagents, respectively.⁹ This methodology was then applied to the synthesis of 5-alkylidene (arylidene)furan-2(5*H*)-ones.¹⁰

In connection with our studies on the synthesis of oxygen- and nitrogen-containing heterocycles, we wish to report the electrophilic cyclisation of dienamides and enynamides with ICl as regioselective method for synthesising 5-alkylidene and 5-(iodoalkylidene)-pyrrol-2(5H)-ones, respectively. We first examined the reaction of our (2Z, 4E)-dienamides 1 using several electrophilic halogen sources (ICl, I₂, I₂/KI, NBS, ...). The dienamides 1 were obtained in excellent yields by treatment of the corresponding (2Z, 4E)-dienoic acids^{9d} with oxalyl chloride followed by addition of primary amine.¹¹ ICl was found to be the best reagent to obtain fair to good yields of 5-alkylidene pyrrol-2(5H)-ones 2. The use of other sources of halogen (NIS, NBS, I2/KI, ...) led to lower yields. A number of solvents were examined including ether, THF, acetonitrile, toluene and dichloromethane. The latter gave the best results, which we think may be due to a greater ability to solubilise ICl. Interestingly, the cyclisation is followed by in-situ dehydrohalogenation leading to 5-alkylidene pyrrol-2(5H)-ones **2a**-g. This takes place without any addition of base (Scheme 1 and Table 1), as opposed to what was observed previously when we prepared γ -alkylidene butenolides by halolactonisation of dienoic acids, where

Scheme 1.

Table 1. Synthesis of 5-alkylidene (arylidene)-pyrrol-2(5H)-ones 2a-g

Entry	\mathbb{R}^1	R ²	R ³	Pyrrol-2(5H)-one	Yield (%)	Z/E^{a}	$Z/E^{\rm b}$
1	Ph	Bn	Ph	2a	55	100/0	100/0
2	Ph	Bn *	Me ₃ Si	2b	80	10/90	100/0
3	Ph	(CH ₃) ₂ CH–CH–CH ₃	Me ₃ Si	2c	77	5/95	100/0°
4	Н	PhCH(CH ₃)	Me ₃ Si	2d	58	6/94	78/22
5	CH_3	Bn	Me ₃ Si	2e	78	3/97	100/0
6	CH_3	m-CH ₃ O–C ₆ H ₄	Me ₃ Si	2f	50	5/95	100/0
7	CH_3OCH_2	m-CH ₃ O–C ₆ H ₄	Me ₃ Si	2g	51	7/93	100/0

^a Before isomerisation reaction.

^b After a spontaneous isomerisation.

^c $[\alpha]_{\rm D}^{25} + 29^{\circ}$ (c = 2%, CH₂Cl₂).

it was necessary to use a base such as the DBU to form the exocyclic double bond.¹⁰ The results are summarised in Table 1.

As expected, the selectivity observed was largely in favour of the (*E*)-stereochemistry of the exocyclic double bond. Nevertheless, selectivity was highly dependent on temperature and the nature of the substituent. For the first time, γ -silylmethylidene pyrrol-2(5*H*)-ones **2b**-g were obtained with mainly *E* stereochemistry for the exocyclic double bond, which was confirmed by NOESY experiments. It should be noted that at room temperature **2b**-g isomerised quickly (after few hours) largely in favour of *Z* stereochemistry. In the case of the formation of **2a**, the desired benzylidene pyrrol-2(5*H*)-one was obtained only with a complete (*Z*)-configuration of the exocyclic double bond. This can be explained by the greater thermodynamic stability of the (*Z*)-isomer of **2a**

compared to (*E*)-**2a** where the extensive interaction of the ortho hydrogens of the phenyl group and the phenyl substituent prevents conjugation. As shown in Table 1, we obtained optically pure γ -silylmethylidene pyrrol-2(5*H*)-ones **2c** from the available optically active amide **1c** (entry 3), and in all cases the γ -alkylidene pyrrol-2(5*H*)-ones **2** were obtained without any trace of 2pyridone. It should be noted that the alkylidene pyrrol-2(5*H*)-ones were not stable and gradually decomposed upon heating or exposure to air. It was also necessary to neutralise silica during chromatography using a base such as triethylamine to avoid their decomposition.

We next chose to extend our method by investigating similar cyclisation of (Z)-alk-2-en-4-ynamides 3a-e. Alk-2-en-4-ynamides 3a-e were prepared via the Sono-gashira cross-coupling reaction¹² of terminal alkynes with (Z)-3-iodoalk-2-enamides (Scheme 2). The mild

Scheme 2.

5a: $R = p.CH_3-C_6H_4$, E/Z = 90/10(71%); **5b**: R = 3-thienyi,E/Z = 75/25(65%); **5c**: R = tert.butylvinyl, 5E/5Z = 10/90(62%); **5d**: $R = p.Br-C_6H_4$, E/Z = 88/12(67%); **5e**: $R = m.Cl-C_6H_4$, E/Z = 85/15(60%).

Scheme 4.

Table 2. Synthesis of (iodoalkylidene)-pyrrol-2(5*H*)-ones 4a–e

Entry	\mathbb{R}^1	\mathbb{R}^2	Product	E/Z	Yield (%)
1	Н	Ph	4 a	90/10	65
2	CH_3	Ph	4b	65/35	79
3	Ph	Ph	4c	55/45	80
4	CH_3	Me ₃ Si	4d	85/15	75
5	CH_3	$HOC(CH_3)_2$	4e	90/10	70

experimental conditions of the reaction resulted in excellent yields of (Z)-enynamides and no polymerisation products were detected.

Indeed, treatment of (*Z*)-alk-2-en-4-ynamides $3\mathbf{a}-\mathbf{e}$ by ICl in CH₂Cl₂ gave good yields of regioselective 5-(iodoalkylidene or arylidene)-pyrrol-2(5*H*)-ones $4\mathbf{a}-\mathbf{e}$ (Scheme 3 and Table 2).¹³ In our case, this iodocyclisation reaction proceeded via the 5-*exo* process, and the corresponding six-membered ring lactams were not observed in either case. The exocyclic double bond formed had mainly the *E* configuration except in the case of $4\mathbf{b}$ and $4\mathbf{c}$ (Table 2, entries 2 and 3), where a significant amount of *Z*-isomer were observed.

Finally, Suzuki cross-coupling¹⁴ of **4b** with vinyl or aryl boronic acids using toluene as solvent, ethanol as co-solvent and $3 \mod \%$ of tetrakis(triphenylphosphine)palladium(0) as catalyst allowed the stereoselective synthesis of desired products **5a**–**e** (Scheme 4).¹⁵ The use of (*E*)-tertiobutyl vinyl boronic acid reagent permitted the transfer of a vinyl group with retention of the configuration of the double bond, and no polymerisation products were observed.

In conclusion, we describe here efficient and general syntheses of 5-alkylidene (or arylidene) and 5-(iodoalkylidene or arylidene)-pyrrol-2(5*H*)-ones by halolactamisation of unsaturated amides. Further studies are currently in progress aimed at broadening the application of iodoalkylidene lactams to the synthesis of natural alkylidene pyrrolones.

Acknowledgements

We thank MESR and CNRS for providing financial support and the 'service d'analyse chimique du vivant de tours' for recording NMR and mass spectra.

References and notes

- 1. Celmer, W. D.; Solomons, I. A. J. Am. Chem. Soc. 1955, 77, 2861.
- (a) Simmons, C. J.; Marner, F.-J.; Cardellina, J. H., II; Moore, R. E.; Seff, K. *Tetrahedron Lett.* **1979**, *20*, 2003; (b) Cardellina, J. H., II; Moore, R. E. *Tetrahedron Lett.* **1979**, *20*, 2007.
- Abdullaev, N. D.; Samikov, K.; Antsupova, T. P.; Yagudaev, M. R.; Yunusov, S. Yu. *Khim. Prir. Soedin.* **1987**, (5), 692 [*Chem. Nat. Compd.* (Engl. Transl.), **1987**, 23, 576].
- (a) Falk, H.; Grubmayr, K.; Herzig, U.; Hofer, O. *Tetrahedron Lett.* **1975**, *16*, 559; (b) Lightner, D. A.; Park, Y.-T. J. Heterocycl. Chem. **1977**, *14*, 415.
- 5. For recent synthesis see: (a) Brückner, R. Curr. Org. Chem. 2001, 5(6), 679; (b) Rossi, R.; Bellina, F. Targets Heterocycl. Syst. 2001, 5, 169; (c) Brückner, R. Chem. Commun. 2001, 141; (d) Hanisch, I.; Brückner, R. Synlett 2000, 374; (e) Brückner, R.; Ohe, F. v. d. New J. Chem. 2000, 659; (f) Siegel, K.; Brückner, R. Synlett 1999, 1227; (g) Xu, C.; Negishi, E.-I. Tetrahedron Lett. 1999, 40, 431; (h) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387; (i) Görth, F. C.; Umland, A.; Brückner, R. Eur. J. Org. Chem. 1998, 1055; (j) Rossi, R.; Bellina, F.; Biagetti, M.; Mannina, L. Tetrahedron Lett. 1998, 39, 7799; (k) Rossi, R.; Bellina, F.; Biagetti, M.; Mannina, L. Tetrahedron Lett. 1998, 39, 7599; (1) Rossi, R.; Bellina, F.; Mannina, L. Tetrahedron Lett. 1998, 39, 3017; (m) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P. Tetrahedron 1998, 54, 135; (n) Marshall, J. A.; Wolf, M. A.; Wallace, E. M. J. Org. Chem. 1997, 62, 367; (o) Kotora, M.; Negishi, E.-I. Synthesis 1997, 121;; (p) Negishi, E.-I.; Kotora, M. Tetrahedron 1997, 53, 6707; (q) Marshall, J. A.; Wolf, M. A. J. Org. Chem. 1996, 61, 3238; (r) Marshall, J. A.; Wallace, E. M. J. Org. Chem. 1995, 60, 796.
- (a) Wuckelt, J.; Döring, M.; Langer, P.; Beckert, R.; Görls, H. J. Org. Chem. 1999, 64, 365; (b) Yoshimatsu, M.; Machida, K.; Fuseya, T.; Shimizu, H.; Kataoka, T. J. Chem. Soc., Perkins Trans. 1996, 1839; (c) Abell, A. D.; Oldham, M. D.; Taylor, J. M. J. Chem. Soc., Perkin Trans. 1 1995, 953; (d) Murakami, M.; Hayashi, M.; Ito, Y. J. Org. Chem. 1994, 59, 7910; (e) Gill, G. B.; James, G. D.; Oates, K. V.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1993, 23, 2567; (f) Fiorenza, M.; Reginato, G.; Ricci, A.; Taddei, M. J. Org. Chem. 1984, 49, 551; (g) Walton, H. M. J. Org. Chem. 1957, 22, 315.
- 7. Rousset, S.; Abarbri, M.; Thibonnet, J.; Duchêne, A.; Parrain, J.-L. Chem. Commun. 2000, 1987.
- Cherry, K.; Abarbri, M.; Parrain, J.-L.; Duchêne, A. Tetrahedron Lett. 2003, 44, 5791.
- (a) Abarbri, M.; Parrain, J.-L.; Kitamura, M.; Noyori, R.; Duchêne, A. J. Org. Chem. 2000, 65, 7475; (b) Thibonnet, J.; Abarbri, M.; Duchêne, A.; Parrain, J.-L. Synlett 1999, 141; (c) Thibonnet, J.; Abarbri, M.; Parrain, J.-L.;

Duchêne, A. Synlett **1997**, 771; (d) Abarbri, M.; Parrain, J.-L.; Cintrat, J.-C.; Duchêne, A. Synthesis **1996**, 82; (e) Abarbri, M.; Parrain, J.-L.; Duchêne, A. Tetrahedron Lett. **1995**, 36, 2469; (f) Duchêne, A.; Abarbri, M.; Parrain, J.-L.; Kitamura, M.; Noyori, R. Synlett **1994**, 524.

- 10. Rousset, S.; Thibonnet, J.; Abarbri, M.; Duchêne, A.; Parrain, J.-L. *Synlett* **2000**, 260.
- 11. Abarbri, M.; Parrain, J.-L.; Duchêne, A. Synth. Commun. 1998, 28, 239.
- (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron* Lett. 1975, 16, 4467; (b) Sonogashira, S. In Metal-Catalyzed Cross-Coupling Reactions; Stang, P. J., Diederich, F., Eds.; Wiley-VCH: Weinheim, 1998; p 203; (c) Sonogashira, K. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Coupling reactions between sp² and sp carbon centers; Pergamon: Oxford, 1991; Vol. 3, p 521.
- 13. Typical procedure: Preparation of 2a-g or 4a-e. Iodine monochloride (1.7 g, 10.5 mmol) in dry dichloromethane (10 mL) was added dropwise at 0 °C to dieneamide 1 (or enynamide 3) (10 mmol). Stirring was then maintained for 3h at room temperature in darkness, the mixture was hydrolysed by dropwise addition of a 5% solution of sodium thiosulfate until the solution became clear. The solution was then extracted with CH_2Cl_2 (3×15 mL) and dried with MgSO₄. After evaporation of the solvent, the products were obtained after purification by flash column chromatography on silica (petroleum ether/diethyl ether/ triethylamine; 80/19/1) or by crystallisation in diethyl ether to yield alkylidene pyrrol-2(5H)-one **2** or iodoalkylidene pyrrol-2(5H)-one 4. For example: Compound (Z)-2e: IR (neat): 2954, 1672, 1611; ¹H NMR (CDCl₃, 200 MHz) δ (ppm): 0.21 (s, 9H), 1.98 (s, 3H), 4.64 (s, 2H), 4.85 (s, 1H), 6.18 (s, 1H), 7.19–7.31 (m, 5H); ¹³C NMR (CDCl₃, 50 MHz) δ (ppm): -0.04 (3C), 12.3, 52.2, 103.5, 122.3, 127.2, 128.4 (2C), 128.9 (2C), 139.8, 147.5, 161.6, 164.3; MS (70 eV, EI) m/z: 271 (M, 4), 243 (22), 91 (100), 73 (16), 65 (20). (E)-4b: IR (neat): 3065, 2964, 1677, 1603; ¹H

NMR (CDCl₃, 200 MHz) δ (ppm): 2.55 (s, 3H), 4.46 (s, 2H), 6.47 (s, 1H), 7.22–7.56 (m, 10H); ¹³C NMR (CDCl₃, 50 MHz) δ (ppm): 19.0, 52.5, 74.3, 127.1, 127.2, 128.3 (2C), 128.5 (2C), 128.8 (2C), 129.8, 130.3 (2C), 140.5, 141.6, 147.2, 152.3, 157.7; MS (70 eV, EI) *m/z* (%): 401 (M, 0.4), 127 (6), 91 (100), 65 (18), 64 (17), 48 (11). (*Z*)-4b: ¹H NMR (CDCl₃, 200 MHz) δ (ppm): 2.61 (s, 3H), 4.51 (s, 2H), 6.34 (s, 1H), 7.22–7.56 (m, 10H); ¹³C NMR (CDCl₃, 50 MHz) δ (ppm): 19.5, 54.6, 74.2, 126.9, 127.2, 128.0 (2C), 128.6 (2C), 128.8 (2C), 129.3, 130.5 (2C), 140.4, 141.1, 146.1, 151.9, 157.6.

- (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
- 15. Typical procedure: Preparation of 5a-e. An oven-dried Schlenk flask was evacuated and back-filled with argon and charged with ethanol (8 mL), toluene (10 mL), pyrrolone 4b (5 mmol), and aryl boronic acid (6 mmol). The flask was evacuated and back-filled with argon and then 0.6 mL of 1 M solution of Na₂CO₃ and Pd(PPh₃)₄ (173 mg, 0.15 mmol, $3 \mod \%$), were added. The reaction mixture was stirred at 50 °C for 12 h, the solution was filtered through a Celite pad and the solvents were evaporated. The residue was extracted with diethylether, and dried over anhydrous MgSO₄. Products 5a-e were obtained after purification by flash column chromatography on silica (petroleum ether/diethyl ether/triethylamine; 80/19/ 1). For example: (E)-1-benzyl-4-methyl-5(phenyl-p-tolylmethylene)-pyrrol-2(5H)-one 5a. (E)-5a: IR (neat): 3028, 2964, 1673, 1604; ¹H NMR (CDCl₃, 200 MHz) δ (ppm): 1.53 (d, J = 1.4 Hz, 3H), 2.45 (s, 3H), 4.74 (s, 2H), 6.29 (q, J = 1.4 Hz, 1H), 7.23–7.46 (m, 14H); ¹³C NMR $(CDCl_3, 50 \text{ MHz}) \delta$ (ppm): 15.8, 21.8, 52.5, 115.8, 124.4, 127.1, 127.9, 128.3 (2C), 128.4 (2C), 128.8 (2C), 129.5 (2C), 130.6 (2C), 131.6 (2C), 135.3, 138.5, 139.3, 141.0, 148.0, 150.5, 160.1; MS (70 eV, EI) m/z (%): 365 (M, 35), 275 (21), 274 (100), 165 (17), 105 (22), 65 (24), 39 (13). (Z)-5a: ¹H NMR (CDCl₃, 200 MHz) δ (ppm): 1.55 (s, 3H), 2.44 (s, 3H), 4.73 (s, 2H), 6.34 (br s, 1H), 7.20-7.49 (m, 14H).